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Abstract

When dealing with multi-view data, the heterogeneity of data
attributes across different views often leads to label ambigu-
ity. To effectively address this challenge, this paper designs
a Multi-View Partial-Label Learning (MVPLL) framework,
where each training instance is described by multiple view
features and associated with a set of candidate labels, among
which only one is correct. The key to deal with such problem
lies in how to effectively fuse multi-view information and ac-
curately disambiguate these ambiguous labels. In this paper,
we propose a novel approach named CFDM, which explores
the consistency and complementarity of multi-view data by
multi-view contrastive fusion and reduces label ambiguity
by multi-class contrastive prototype disambiguation. Specifi-
cally, we first extract view-specific representations using mul-
tiple view-specific autoencoders, and then integrate multi-
view information through both inter-view and intra-view con-
trastive fusion to enhance the distinctiveness of these rep-
resentations. Afterwards, we utilize these distinctive repre-
sentations to establish and update prototype vectors for each
class within each view. Based on these, we apply contrastive
prototype disambiguation to learn global class prototypes and
accordingly reduce label ambiguity. In our model, multi-
view contrastive fusion and multi-class contrastive proto-
type disambiguation are conducted mutually to enhance each
other within a coherent framework, leading to a more ideal
classification performance. Experimental results on multiple
datasets have demonstrated that our proposed method is su-
perior to other state-of-the-art methods.

Introduction
With the rapid development of internet technologies, net-
work platforms generate vast amounts of multi-view data.
For example, in the task of news webpage classification
(Figure 1), the news webpage can be represented by text, im-
ages, and video, and may be associated with multiple topic
labels (such as natural disasters, weather, and environment).
However, only one of these labels can accurately reflect the
news webpage. Obviously, it is a significant challenge to ac-
curately identify the correct label due to heterogeneous data
from multiple views and ambiguous labels. To this end, we
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Figure 1: An Example of multi-view webpage classification.

design a new learning framework named Multi-View Partial-
Label Learning (MVPLL), where each training instance is
described by multiple heterogeneous views and associated
with several candidate labels, among which only one is cor-
rect. MVPLL provides an effective way to learn from such
complex data and predict correct labels for unseen instances.

The key to deal with multi-view partial-label data lies
in how to effectively integrate these heterogeneous features
while accurately identify the correct labels from ambiguous
label sets. An intuitive strategy to formulate MVPLL prob-
lem is to utilize either Multi-View Learning (MVL) (Lyu
et al. 2024; Liu et al. 2023b; Zhang et al. 2023) or Partial-
Label Learning (PLL) (Dong et al. 2023; Xu et al. 2023;
Feng et al. 2020; Li et al. 2023). MVL provides an effec-
tive framework to integrate multi-view heterogeneous infor-
mation and directly induce the final prediction model. How-
ever, such a unique feature-fusion operation cannot precisely
eliminate the ambiguity in the candidate labels, inevitably
leading to inaccurate identification of the true labels. PLL
focuses on identifying the unique correct label from the can-
didate label set, but it ignores the exploration of potential
multi-view consistency and complementarity information,
which also significantly damages the classification perfor-
mance of the learning model. Recently, some studies (Zhao
et al. 2022; Sun, Yu, and Tian 2023) attempt to handle these
two challenges simultaneously, however, they can only han-
dle dual-view scenarios and hardly be extended to more



views, which restricts their practicalities in real-world ap-
plications. Meanwhile, they don’t establish direct and com-
pact relationships between multi-view features and ambigu-
ous labels, which naturally leads the label disambiguation
performance to be sub-optimal and finally decreases the re-
liability of the final prediction model.

To address the above issue, in this paper, we design a gen-
eral MVPLL framework and accordingly propose a novel
approach named CFDM, which explores the consistency
and complementarity of multi-view data by multi-view con-
trastive fusion and addresses label ambiguity by multi-class
contrastive prototype disambiguation. Specifically, we first
utilize multiple view-specific autoencoders to project the
raw multi-view data into low-level representations, which
are further respectively processed through two view-shared
MLP layers to obtain high-level representations. Then, we
integrate these high-level representations using both inter-
view and intra-view contrastive learning to enhance their
distinctiveness in the embedding space, where the outputs
of the classifier are employed to generate positive pairs for
intra-view contrastive comparison. Afterward, we establish
and dynamically update prototype vectors for each class
within each view according to these distinctive represen-
tations. Finally, we employ a contrastive prototype disam-
biguation method to learn global class prototypes, thereby
reducing label ambiguity. In our model, multi-view con-
trastive fusion and multi-class contrastive prototype disam-
biguation are conducted mutually to enhance each other
within a coherent framework, which leads to a more ideal
classification performance. In summary, the contributions of
our paper lie in the following aspects:

• We design a general MVPLL framework and propose
a novel CFDM method, which integrates multi-view
heterogeneous information through a contrastive fusion
mechanism and reduces label ambiguity via a contrastive
prototype disambiguation module.

• CFDM not only explores the comprehensive consistency
and complementarity across different views, but also es-
tablishes the compact relationships between multi-view
features and ambiguous labels for facilitating label dis-
ambiguation, which significantly enhances the classifica-
tion performance of the learning model.

• Extensive experimental results and comprehensive ex-
perimental analysis have demonstrated that our proposed
CFDM method performs significant superiorities against
other existing state-of-the-art approaches.

Related Work
Partial-Label Learning (PLL)
Partial-Label Learning focuses on learning from instances
with multiple ambiguous candidate labels, where the key
to solve the problem lies in how to effectively conduct la-
bel disambiguation. To this end, researchers propose various
disambiguation strategies, primarily divided into average-
based strategy and identification-based strategy. Average-
based strategy (Zhang and Yu 2015; Lv et al. 2023) assigns
equal weight to the candidate labels and makes predictions

by averaging their modeling outputs; whereas identification-
based strategy (Chai, Tsang, and Chen 2019; Wang and
Zhang 2022) treats the true label as an implicit variable and
achieves disambiguation by iteratively updating label confi-
dence and model parameters. Recently, deep learning tech-
niques are applied to PLL (Guo et al. 2023; Cao et al. 2023),
leading to the development of deep partial label learning.
This enables models to more accurately identify true la-
bels through learning deeper feature representations, signif-
icantly enhancing the ability to handle complex data (Wang
et al. 2021; Xia et al. 2023).

Multi-View Learning (MVL)
Multi-View Learning aims to learn from instances with het-
erogeneous features, where the key to solve the problem lies
in how to effectively learn complementary and consistent
information from multiple views. Existing MVL methods
can be roughly divided into the following categories: Co-
training methods (Du et al. 2021; Appice and Malerba 2015)
alternate training across different views to promote consis-
tency between them; Multi-kernel methods (Li et al. 2022)
jointly optimize a set of preset kernels and try to produce
a consistent optimal kernel; Multi-view matrix factorization
methods (Zhang et al. 2021; Luong et al. 2022) reduce data
dimensions and extract a common low-dimensional repre-
sentation from different views; Graph-based methods (Gu
et al. 2023; Zhong, Lyu, and Yang 2024) construct graph
structures to integrate information from multi-view data.
Besides, there are multi-view subspace clustering methods
(Chen et al. 2024; Liu et al. 2022) and deep multi-view
methods (Wen et al. 2024; Liu et al. 2024; Wang et al. 2023;
Lin et al. 2022).

Multi-View Partial-Label Learning (MVPLL)
Multi-View Partial-Label Learning can be regarded as an in-
tegration of PLL and MVL, which aims to learn from train-
ing data with diverse representations and label ambiguity.
To learn from such complicated data, (Zhao et al. 2022)
proposes an MVPLL method that employs a large-margin-
based learning strategy and integrates complementary and
consensus information across different views to train the
MVPLL classifier. (Sun, Yu, and Tian 2023) adopts deep
neural networks for multi-view information fusion, and uti-
lizes class prototypes to enhance the model’s discriminative
capabilities. However, these methods are primarily designed
for dual-view scenarios and thus are difficult to extend to
more view situations, which limits their applicability in real-
world applications. Additionally, they don’t establish a di-
rect and compact connection between multi-view features
and ambiguous labels, which results in sub-optimal label
disambiguation performance and consequently affects the fi-
nal classification performance of the prediction models.

Methodology
Preliminary
Notations. Formally, we denote X = Rd1 × Rd2 × . . . ×
RdV = {Xv}Vv=1 as the feature space with V views and Y =
{c1, c2, . . . , cq} as the label space with q class labels, where



Figure 2: The framework of our proposed CFDM, which consists of two main components: (1) Multi-view Contrastive Fusion,
we employ inter-view and intra-view contrastive learning to explore the consistency and complementarity of multi-view data,
thereby enhancing the distinctiveness of high-level features, where the outputs of classifier are employed to generate positive
pairs for intra-view contrastive comparison; (2) Multi-class Contrastive Prototype Disambiguation, we update prototype vectors
for each class based on distinctive high-level features and employ contrastive prototype disambiguation to ensure consistency
of class representations across different views and gradually reduce label ambiguity.

dv(1 ≤ v ≤ V ) is the feature dimension of the v-th view.
Given the MVPLL training dataset D = {(xi, Si) | 1 ≤
i ≤ N} with N instances, where xi = [x1

i ,x
2
i , ...,x

V
i ] ∈ X

denotes the i-th training instance and Si ⊆ Y denotes the
candidate label set associated with xi. The key assumption
of MVPLL is that the ground-truth label yi ∈ {0, 1}q×1 is
always concealed in its candidate label set and not accessi-
ble to the model during the whole training process. MVPLL
aims to learn a desired multi-class classifier f :X → Y from
D and predict the correct label for unseen instances.

Classifier Induction. The key of our model is to induce
a desired multi-class classifier for prediction. Specifically,
we assign each instance xi with a pseudo label vector si ∈
[0, 1]q , whose element sij indicates the probability of label j
being the ground-truth label of xi, and the total probability
of 1 is allocated among the candidate labels in Si. Ideally,
as the training progresses, si should allocate more probabil-
ity to the (unknown) correct label. During the whole training
process, sij is updated by the contrastive prototype disam-
biguation module in the following subsection, and performs
as a supervised signal to guide the training of the objective
classifier. In our model, we use the cross-entropy loss ℓCE

to compute the classification loss:

Lcls =

q∑
j=1

−sij log (pj(xi)) ,

s.t.
∑
j∈Si

sij = 1 and sij = 0,∀j /∈ Si,

(1)

where pj(xi) is the prediction probability of the classifier,

which is calculated by averaging the outputs of V different
views, i.e., pj(xi) =

1
V

∑V
v=1 pj(x

v
i ).

View-Specific Autoencoder Network. Multi-view data
often contains feature redundancy and random noise, which
significantly affects the reliability of the learned classifiers.
To address this issue, motivated by (Lin et al. 2022), we
apply multiple view-specific autoencoder networks to pu-
rify the view features and extract the corresponding view-
specific latent representations. Specifically, for v-th view, we
denote Ev(Xv; θv) and Dv(Zv; ρv) as the encoder and the
decoder respectively, where θv and ρv are network param-
eters. Meanwhile, denote zvi = Ev(xv

i ; θ
v) ∈ Rlv as lv-

dimensional latent representation of i-th instance, and x̂v
i =

Dv(zvi ; ρ
v) as the reconstruction feature representation cor-

responding to zvi . To ensure that these latent representations
can accurately recover view-specific information for each
view, we define Lrec as the reconstruction loss between the
original input features and their reconstructed features:

Lrec =
1

V

V∑
v=1

∥Xv −Dv
(
Ev(Xv)

)
∥2F . (2)

After obtaining view-specific latent representations Zv , we
adopt a view-shared project head F (·) on Zv to obtain high-
level representations Hv = F (Zv; δv) ∈ RN×kv , where δv

denotes network parameter and kv is the dimension of the
high-level representations for the v-th view. Our proposed
CFDM method aims to integrate these high-level representa-
tions from different views and reduce label ambiguity, which
is separately achieved through two main modules in Figure



2: Multi-view Contrastive Fusion Module and Multi-class
Contrastive Prototype Disambiguation Module.

Multi-view Contrastive Fusion
Consistency and complementarity are two fundamental prin-
ciples for boosting multi-view data fusion. Inspired by the
success of contrastive learning on multi-view clustering
(Wang et al. 2023), we design two contrastive learning com-
ponents, inter-view contrastive learning and intra-view con-
trastive learning, to explore the consistency and complemen-
tarity of MVPLL data and learn distinctive high-level repre-
sentations for improving subsequent label disambiguation.

Inter-view Contrastive Learning. Inter-view contrastive
learning focuses on learning consistent representations
across different views to explore common semantics, which
encourages the representations of the same instance to clus-
ter together while pushing apart those of different instances.
Therefore, when conducting inter-view contrastive learn-
ing, the representations of the same instance from differ-
ent views are regarded as positive samples, while others are
regarded as negative samples. Specifically, given a mini-
batch {(xi, Si)}Mi=1 includes M instances with V views,
each high-level representation hv

i has (MV − 1) feature
pairs, i.e., {hv

i ,h
m
j }m=1,...,V

j=1,..,M ,where {(hv
i ,h

m
i ), v ̸= m}

are (V − 1) positive pairs and the remaining V (M − 1)
representation pairs are negative pairs. Then, the inter-view
contrastive loss function between each pair of views v and
m is formulated as:

ℓ
(vm)
cont1 = − 1

M

M∑
i=1

log
ed(h

v
i ,h

m
i )/τ

M∑
j=1

∑
n=v,m

ed(h
v
i ,h

n
j )/τ − e1/τ

, (3)

where τ is the temperature hyper-parameter, and d (·, ·) is
the cosine distance to measure the similarity between two
high-level representations. After calculating the loss within
each pair of views, we compute the total inter-view con-
trastive loss by averaging the losses across all view pairs:

Lcont1 =
1

2V

V∑
v=1

V∑
m=1,v ̸=m

ℓ
(vm)
cont1. (4)

Intra-view Contrastive Learning. Intra-view contrastive
learning focuses on learning complementary representations
within each view to capture specific semantics, making in-
stances of the same class more cohesive and that of different
classes more easily distinguishable. Therefore, within each
view, positive samples consist of representations from in-
stances belonging to the same class, while representations
from different classes are regarded as negative samples.
Specifically, given a mini-batch {(xi, Si)}Mi=1 includes M
instances with V views, for each (xv

i , Si), we use the output
of the classifier to predict its label ỹ = argmaxj∈Si

pj(x
v
i ).

Then, we select the positive samples for its high-level repre-
sentation hv

i as follows:

P(xv
i ) = {hv

k|hv
k ∈ N(xv

i ), ỹ
′ = ỹ}, (5)

where P(xv
i ) is the positive set, N(xv

i ) = hv \ {hv
i },hv =

{hv
i }Mi=1 ∈ RM×kv , and ỹ′ is the predicted label for the cor-

responding training instance of hv
k. For view v, we calculate

the intra-view contrastive loss as follows:

ℓ
(v)
cont2 = − 1

M |A|

M∑
i=1

∑
hv

n∈A

log
ed(h

v
i ,h

v
n)/τ

M∑
k=1,k ̸=i

ed(h
v
i ,h

v
k)/τ

, (6)

where A = P(xv
i ), and |·| denotes the number of elements

in a set. After calculating the loss within each view, we es-
tablish the overall intra-view contrastive loss by averaging
the losses across all views as follows:

Lcont2 =
1

V

V∑
v=1

ℓ
(v)
cont2. (7)

Multi-class Contrastive Prototype Disambiguation
As described in the previous subsections, intra-view con-
trastive learning relies heavily on accurate classifier predic-
tions for positive set selection. However, in MVPLL, the
learned classifier struggles to make correct predictions since
the label supervision signals are always ambiguous. To ad-
dress this issue, we further design a multi-class contrastive
prototype disambiguation module to reduce label ambigu-
ity, which consists of two key components: prototype con-
trastive learning and pseudo label updating.

Prototype Contrastive Learning. Prototype contrastive
learning aims to obtain global class prototypes that char-
acterize the attributes of each class accurately, which are
further applied to update the pseudo labels. Specifically, we
first establish a set of class prototype vectors for each view,
where these prototype vectors derive from multi-view con-
trastive fusion module. In this paper, we update the proto-
type vector ηvc by the following moving-average mechanism:

ηvc = Normalize
(
γηvc + (1− γ)hv

i

)
,

if c = argmaxj∈Si
pj(x

v
i ),

(8)

where the momentum prototype ηvc of class c is defined
by the moving-average of the normalized high-level repre-
sentations hv

i from instances predicted to be class c. γ is
a tunable hyperparameter that controls the fusion rate be-
tween the old prototype and the new information. To main-
tain cross-view consistency of the prototypes, we should en-
courage the prototype vectors of the same class from dif-
ferent views to be as close as possible. Specifically, for the
v-th view, each class prototype ηvj has (qV − 1) feature
pairs, i.e., {ηvj , ηmc }m=1,...,V

c=1,..,q , where {(ηvj , ηmj ), v ̸= m} are
(V − 1) positive pairs and the remaining V (q− 1) represen-
tation pairs are negative pairs. The formula for the prototype
contrastive loss between ηv and ηm is formulated as:

ℓ
(vm)
cont3 = −1

q

q∑
j=1

log
ed(η

v
j ,η

m
j )/τ

q∑
c=1

∑
n=v,m

ed(η
v
j ,η

n
c )/τ − e1/τ

. (9)



Algorithm 1: Pseudo-code of CFDM (one epoch)
Input: MVPLL training dataset: D = {(xi, Si)}Ni=1; net-
work model: Ev(·), Dv(·) and F (·); trade-off coefficients:
λ1, λ2, λ3 and λ4.
Process:

1: for iter = 1, 2, ..., do
2: Sample a mini-batch {(xi, Si)}Mi=1 from D.
3: Initialize {θv, ρv}Vv=1 by minimizing Eq.(2).
4: Obtain high-level representations by F (·).
5: for xi ∈ {(xi, Si)}Mi=1 do
6: Compute classifier prediction by

ỹ = argmaxj∈Si
pj(x

v
i ).

7: Update class prototype by Eq. (8) − Eq. (10).
8: Updata pseudo label by Eq. (11).
9: end for

10: Compute the reconstruction loss Lrec, inter-view
contrastive loss Lcont1, intra-view contrastive loss
Lcont2, prototype contrastive loss Lcont3 and classi-
fication loss Lcls respectively using Eq. (2), Eq. (4),
Eq. (7), Eq. (10) and Eq. (1).

11: Update network parameters by minimizing overall
loss L in Eq. (12).

12: end for

And correspondingly, the total multi-view prototype con-
trastive loss across all views is calculated by:

Lcont3 =
1

2V

V∑
v=1

V∑
m=1,v ̸=m

ℓ
(vm)
cont3. (10)

Pseudo Label Updating. Pseudo label updating focuses
on finding the nearest class prototype for the high-level rep-
resentation of each instance, thereby reducing label ambigu-
ity. Specifically, for each (xv

i , Si), we assign a pseudo label
vector svi ∈ [0, 1]q , where each element svij indicates the
probability of label j being the ground-truth label of xv

i . Be-
fore model training, the pseudo label svi is initialized with
a uniform distribution, svij = 1

|Si| I(j ∈ Si). Then, it is up-
dated according to the distance between the high-level rep-
resentation of xv

i and the class prototype of the v-th view,
with the closest class prototype being assigned as the class
of the current xv

i . Finally, we use a moving average strategy
to iteratively update the pseudo label svi as follows:

svi = βsvi + (1− β)Ivi ,

Ivi,c =

{
1, if c = argmaxj∈Si

hv⊤
i ηvj ,

0, otherwise,

(11)

where β ∈ (0, 1) is a positive constant. For each xv
i , the

closest prototype indicates its ground-truth class label. Dur-
ing the training process, the pseudo label svi gradually moves
towards the one-hot distribution defined by Eq. (11). If xv

i
consistently points to the same class prototype, the pseudo
label svi will almost converge to the correct label of that
class. For multi-view data, the pseudo label si of instance
xi is computed by averaging the pseudo labels svi across all
views, i.e., si = 1

V

∑V
v=1 s

v
i .

Datasets Instances Labels Views dimensions

MSRCv1 210 5 24/576/512/256/245
Caltech101-7 1474 7 48/40/254/1984/512/928
Mfeat 2000 10 216/76/64/6/240/47
Scene15 4485 15 20/59/40
CCV 6773 20 20/20/20
Caltech101-all 9144 102 48/40/254/512/928

Table 1: Characteristics of our employed datasets.

The Overall Loss Function
By integrating classification loss in Eq. (1), reconstruction
loss in Eq. (2), inter-view contrastive loss Eq. (4), intra-view
contrastive loss Eq. (7) and prototype contrastive loss Eq.
(10), the overall loss function of our model is formulated as:

L = Lcls+λ1Lrec+λ2Lcont1+λ3Lcont2+λ4Lcont3, (12)

where λ1, λ2, λ3 and λ4 are hyper-parameters to balance
the weight of different losses.

Optimization
During the training stage, multi-view contrastive fusion
and multi-class contrastive prototype disambiguation mu-
tually reinforce each other within a coherent framework.
Firstly, the discriminative high-level representations ob-
tained through multi-view contrastive fusion can generate
more precise class prototypes, which are beneficial for la-
bel disambiguation. Conversely, more accurate label disam-
biguation results also facilitate the construction of positive
sets in multi-view contrastive fusion, leading to more dis-
criminative high-level representations. The collaborative it-
eration between these two components ultimately enhances
the classification performance of the learning model. The
pseudo-code of our CFDM is shown in Algorithm 1.

Experiments
Experimental Settings
Datasets. To evaluate the performance of our proposed
CFDM, we conducted experiments on six synthetic MV-
PLL datasets, which are generated from the widely-used
multi-view datasets, including MSRCv1 (Xu, Han, and Nie
2016), Caltech101-7 (Fei-Fei, Fergus, and Perona 2004),
Mfeat (Wang, Yang, and Liu 2019), Scence15 (Fei-Fei and
Perona 2005), CCV (Jiang et al. 2011), Caltech101-all (Fei-
Fei, Fergus, and Perona 2004), by randomly adding labeling
noise under different configurations of the controlling pa-
rameters p and r. Here, p ∈ {0.3, 0.5} controls the propor-
tion of partially labeled instances and r ∈ {1, 2, 3} controls
the number of noisy labels in the candidate label set. Table 1
summarizes the characteristics of these employed datasets.

The Comparing Methods. We employ six state-of-the-art
methods from three categories for comparative studies: (1)
Multi-view partial multi-label methods, including GRADIS
(Chen et al. 2020) and GLADE (Xu et al. 2022), which fo-
cus on both multi-view fusion and partial-label disambigua-
tion simultaneously; (2) Multi-view multi-label methods, in-
cluding ML-BVAE (Fu et al. 2024) and LMVCAT (Liu



Dataset Controlling Comparing Approach

Parameters GRADIS GLADE ML-BVAE LMVCAT UCL TERIAL Ours

MSRCv1

r = 1, p = 0.3 0.482±0.074 0.914±0.027 0.891±0.027 0.966±0.036 0.961±0.039 0.880±0.016 0.971±0.021
r = 1, p = 0.5 0.439±0.076 0.857±0.044 0.885±0.068 0.953±0.035 0.952±0.058 0.880±0.016 0.957±0.031
r = 2, p = 0.3 0.481±0.084 0.885±0.026 0.890±0.027 0.957±0.039 0.952±0.047 0.880±0.016 0.962±0.039
r = 2, p = 0.5 0.460±0.092 0.776±0.052 0.870±0.036 0.952±0.037 0.942±0.062 0.876±0.035 0.953±0.046
r = 3, p = 0.3 0.472±0.058 0.852±0.026 0.876±0.199 0.952±0.056 0.942±0.052 0.881±0.168 0.957±0.019
r = 3, p = 0.5 0.457±0.103 0.685±0.051 0.865±0.039 0.933±0.052 0.934±0.079 0.876±0.035 0.938±0.027

Caltech101-7

r = 1, p = 0.3 0.853±0.013 0.936±0.011 0.857±0.026 0.972±0.053 0.981±0.013 0.976±0.007 0.982±0.002
r = 1, p = 0.5 0.853±0.021 0.889±0.016 0.858±0.027 0.959±0.017 0.978±0.019 0.973±0.007 0.979±0.004
r = 2, p = 0.3 0.853±0.008 0.879±0.012 0.859±0.022 0.964±0.011 0.976±0.020 0.974±0.004 0.980±0.011
r = 2, p = 0.5 0.853±0.022 0.774±0.021 0.858±0.027 0.945±0.039 0.972±0.019 0.971±0.006 0.975±0.009
r = 3, p = 0.3 0.853±0.029 0.821±0.020 0.860±0.030 0.959±0.019 0.973±0.017 0.975±0.005 0.978±0.012
r = 3, p = 0.5 0.841±0.036 0.679±0.031 0.858±0.024 0.953±0.016 0.971±0.019 0.966±0.006 0.973±0.011

Mfeat

r = 1, p = 0.3 0.953±0.012 0.979±0.012 0.974±0.004 0.931±0.037 0.968±0.009 0.969±0.008 0.987±0.005
r = 1, p = 0.5 0.952±0.012 0.970±0.010 0.970±0.005 0.930±0.042 0.968±0.007 0.968±0.008 0.972±0.006
r = 2, p = 0.3 0.953±0.006 0.972±0.009 0.971±0.003 0.927±0.031 0.967±0.009 0.968±0.008 0.978±0.005
r = 2, p = 0.5 0.951±0.015 0.943±0.009 0.968±0.006 0.910±0.039 0.968±0.009 0.968±0.008 0.974±0.004
r = 3, p = 0.3 0.953±0.008 0.961±0.012 0.970±0.005 0.918±0.023 0.968±0.009 0.968±0.009 0.975±0.006
r = 3, p = 0.5 0.951±0.014 0.914±0.010 0.965±0.004 0.908±0.058 0.967±0.009 0.965±0.008 0.970±0.006

Scene15

r = 1, p = 0.3 0.542±0.017 0.729±0.017 0.667±0.012 0.684±0.041 0.762±0.012 0.691±0.017 0.778±0.010
r = 1, p = 0.5 0.531±0.014 0.731±0.015 0.663±0.024 0.674±0.020 0.761±0.011 0.681±0.016 0.767±0.011
r = 2, p = 0.3 0.541±0.021 0.723±0.021 0.657±0.018 0.675±0.023 0.761±0.013 0.683±0.017 0.768±0.004
r = 2, p = 0.5 0.531±0.021 0.715±0.017 0.652±0.011 0.670±0.015 0.761±0.008 0.664±0.016 0.753±0.008
r = 3, p = 0.3 0.537±0.021 0.714±0.024 0.654±0.017 0.665±0.028 0.760±0.012 0.679±0.019 0.762±0.009
r = 3, p = 0.5 0.535±0.019 0.703±0.020 0.653±0.017 0.662±0.020 0.757±0.006 0.654±0.020 0.748±0.005

CCV

r = 1, p = 0.3 0.167±0.010 0.455±0.020 0.346±0.016 0.512±0.020 0.534±0.012 0.467±0.020 0.537±0.011
r = 1, p = 0.5 0.159±0.013 0.452±0.020 0.341±0.021 0.498±0.011 0.530±0.027 0.455±0.021 0.534±0.019
r = 2, p = 0.3 0.156±0.008 0.454±0.020 0.341±0.019 0.512±0.016 0.532±0.013 0.461±0.019 0.533±0.013
r = 2, p = 0.5 0.147±0.009 0.448±0.020 0.341±0.013 0.480±0.016 0.522±0.014 0.442±0.020 0.532±0.018
r = 3, p = 0.3 0.158±0.018 0.450±0.023 0.340±0.021 0.499±0.014 0.531±0.018 0.455±0.021 0.532±0.013
r = 3, p = 0.5 0.149±0.023 0.442±0.024 0.340±0.103 0.461±0.013 0.521±0.018 0.434±0.020 0.527±0.009

Caltech101-all

r = 1, p = 0.3 0.294±0.013 0.614±0.013 0.293±0.011 0.641±0.011 0.653±0.008 0.544±0.003 0.668±0.011
r = 1, p = 0.5 0.287±0.005 0.604±0.011 0.288±0.006 0.615±0.011 0.642±0.003 0.531±0.003 0.662±0.025
r = 2, p = 0.3 0.292±0.011 0.603±0.011 0.289±0.010 0.629±0.018 0.631±0.006 0.534±0.004 0.661±0.026
r = 2, p = 0.5 0.289±0.010 0.586±0.007 0.286±0.006 0.590±0.013 0.629±0.003 0.513±0.003 0.658±0.017
r = 3, p = 0.3 0.288±0.009 0.589±0.009 0.287±0.011 0.613±0.013 0.626±0.008 0.529±0.003 0.660±0.010
r = 3, p = 0.3 0.287±0.010 0.568±0.008 0.286±0.005 0.564±0.006 0.621±0.004 0.500±0.004 0.642±0.010

Table 2: Performance comparisons between our proposed CFDM and other comparing methods on six synthetic datasets, where
the best performance is shown in bold.

et al. 2023a), which focus on multi-view fusion and treat
all candidate labels as true labels; (3) Partial label learning
methods, including UCL (Dong et al. 2023) and TERIAL
(Bao, Rui, and Zhang 2024), which focus on label disam-
biguation and concatenate all view features as the inputs of
the learning model. The configuration parameters for each
comparing method are set according to the recommenda-
tions from their respective literature.

Implementation Details. We implement our experiments
based on Pytorch (Paszke et al. 2019). The encoder Ev(·)
and decoder Dv(·) are formed by four-layer fully con-
nected networks, where the dimensions are respectively set
as {dv, 500, 500, 2000, 512} and {512, 2000, 500, 500, dv}.
The multi-view shared feature project head F (·) is com-
posed of a two-layer MLP with dimensions {512, 256}, and

utilizes ReLU as its activation function. The training pro-
cess uses the Adam optimizer, and the learning rate is cho-
sen from {1e− 4, 3e− 4, 5e− 4}. The hyperparameter γ is
set to 0.99, τ is set to 0.07, while β linearly decreases from
0.95 to 0.8. The number of training epochs is set to 130. All
experiments are conducted on a machine equipped with an
Intel(R) Xeon(R) Gold 6148 2.40GHz CPU, GeForce RTX
3090 GPU, and 512GB RAM. For all experiments, we uti-
lize 5-fold cross-validation, and record the mean and stan-
dard deviation (mean ± std) as the final results.

Comparison Results
Table 2 presents the average test accuracy and standard de-
viation of our proposed CFDM method compared with six
sota methods on six datasets. According to 216 (6 comparing
methods × 6 datasets × 6 configurations) statistical compar-



Figure 3: Accuracy with different parameters λ1, λ2, λ3 and λ4 on Mfeat dataset with r = 1 and p = 0.3.

Lcls Lrec Lcont1 Lcont2 Lcont3 Accuracy

(A) ✓ ✓ ✓ ✓ 0.656±0.021
(B) ✓ ✓ ✓ ✓ 0.641±0.010
(C) ✓ ✓ ✓ ✓ 0.642±0.015
(D) ✓ ✓ ✓ ✓ 0.655±0.013

Ours ✓ ✓ ✓ ✓ ✓ 0.668±0.011

Table 3: Ablation study on Caltech101-all dataset with r =
1 and p = 0.3.

isons, the following observations can be drawn:
• Among all six comparing methods, our proposed CFDM

method is superior to GRADIS, GLADE, ML-BVAE,
LMVCAT, and TERIAL in all cases, and it also outper-
forms UCL in 94.4% cases.

• Among all employed datasets, CFDM outperforms all
comparing methods on MSRCv1, Caltech101-7, Mfeat,
CCV, Caltech101-all datasets. And on Scene15, it is also
superior to other comparing methods over 94.4% cases.

• The improvements of CFDM against other methods are
quite significant, especially in Caltech101-all dataset,
which demonstrates the robustness and effectiveness of
our proposed method to address the MVPLL datasets.

Further Analysis
Ablation Study
To evaluate the effect of each component within CFDM,
we conduct the ablation study between CFDM and its four
degenerated algorithms, where each degenerated algorithm
separately ignores the reconstruction loss Lrec, inter-view
contrastive loss Lcont1, intra-view contrastive loss Lcont2,
and contrastive prototype loss Lcont3. Table 3 records the
experimental results of accuracy on Caltech101-all dataset.
According to Table 3, CFDM is siginificantly superior to
the degenerated algorithms (B) and (C), which indicates
inter-view and intra-view contrastive learning can effec-
tively explore the multi-view consistency and complemen-
tarity to learn discriminative representations. Meanwhile,
CFDM also outperforms the degenerated algorithms (A) and
(D), which indicates view-specific autoencoder network can
eliminate the negative effects of multi-view feature redun-
dancy and random noise, and prototype contrast learning can
learn more precise class prototypes to promote label dis-
ambiguation. Overall, CFDM significantly outperforms all

Figure 4: The convergence analysis on Caltech101-7 and
Mfeat dataset with r = 1 and p = 0.3.

of its four degenerated algorithms, which demonstrates that
CFDM can effectively integrate the above components and
improve the performance of the final classification model.

Sensitivity Analysis
We conduct the sensitivity analysis of CFDM with regard to
its four employed parameters (i.e., λ1, λ2, λ3 and λ4) and
select each parameter from {0.01, 0.1, 0.5, 1, 5, 50}. Figure
3 shows the experimental results on Mfeat dataset. As il-
lustrated in Figure 3, our proposed CFDM achieves good
performance in a wide range of four parameters, which indi-
cates it is insensitive to all parameters λ1, λ2, λ3 and λ4.

Convergence Analysis
We conduct the convergence analysis of our CFDM method
on both Caltech101-7 [left] and Mfeat [right] datasets,
where experimental results of accuracy are illustrated in Fig-
ure 4. According to Figure 4, it is clearly observed that as
the number of epochs increases, the accuracy gradually in-
creases and soon reaches stability. Such phenomenon empir-
ically confirms the convergence of our proposed CFDM.

Conclusion
In this paper, we design a general MVPLL framework and
propose a novel learning approach named CFDM, which ex-
plores the consistency and complementarity of multi-view
data by multi-view contrastive fusion and reduces label am-
biguity by multi-class contrastive prototype disambiguation.
Compared with previous methods, CFDM integrates multi-
view heterogeneous information, and establishes the com-
pact relationships between multi-view features and ambigu-
ous labels to facilitate label disambiguation, which signifi-



cantly improves the model’s performance. Extensive exper-
imental results demonstrate that our proposed method ex-
hibits significant superiority against the state-of-the-art ap-
proaches when learning from MVPLL data.
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