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Abstract

Multi-label Learning with Partial Labels (ML-PL) learns
from training data, where each sample is annotated with part
of positive labels while leaving the rest of positive labels
unannotated. Existing methods mainly focus on extending
multi-label losses to estimate unannotated labels, further in-
ducing a missing-robust network. However, training with sin-
gle network could lead to confirmation bias (i.e., the model
tends to confirm its mistakes). To tackle this issue, we pro-
pose a novel learning paradigm termed Co-Label Selection
(CLS), where two networks feed forward all data and co-
operate in a co-training manner for critical label selection.
Different from traditional co-training based methods that net-
works select confident samples for each other, we start from a
new perspective that two networks are encouraged to remove
false-negative labels while keep training samples reserved.
Meanwhile, considering the extreme positive-negative label
imbalance in ML-PL that leads the model to focus on negative
labels, we enforce the model to concentrate on positive labels
by abandoning non-informative negative labels to alleviate
such issue. By shifting the cooperation strategy from “Sample
Selection” to “Label Selection”, CLS avoids directly drop-
ping samples and reserves training data in most extent, thus
enhancing the utilization of supervised signals and the gener-
alization of the learning model. Empirical results on various
multi-label datasets demonstrate that our CLS is significantly
superior to other state-of-the-art methods.

Introduction
Multi-label learning aims to predict a set of labels related
to a sample, which has been widely applied in a variety of
fields ranging from document classification (Liu et al. 2021),
image annotation (Wang et al. 2022), social tag recommen-
dation (Vu et al. 2020) and emotion recognition of internet-
based multimedia data (Wang et al. 2015). Current stud-
ies strongly rely on high-quality fully labelled multi-label
datasets with complete and accurate labels, while it is almost
impossible to annotate large-scale benchmarks, especially
when the number of categories is large. Considering the sig-
nificant effort required to collect an adequate and exhaustive
list of labels for each instance, it is appealing if model can
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Figure 1: Example of sample with ground-truth labels [a],
partial label [b], and noisy labels [c]. Samples in ML-PL
are annotated with a subset of positive labels and needs less
annotation cost than multi-label learning, and can be viewed
as a special case of noisy labels.

learn from a few available labels and automatically distin-
guish false-negative and true-negative labels. Following this,
(Durand, Mehrasa, and Mori 2019) conduct the first attempt
to empirically compare various labelling methodologies to
demonstrate the possibility for employing partial labels on
multi-label datasets. (Huynh and Elhamifar 2020) regularise
the cross-entropy loss with a cost function that gauges the
smoothness of labels and sample features characteristics to
avoid the overfitting problem in ML-PL. (Cole et al. 2021)
extend multi-label losses to handle the extreme case of ML-
PL, where annotators only provide one relevant label for
each instance. Although these techniques greatly advance
the learning of missing-robust network by extending vari-
ous loss function variations, all of them are formulated with
a single network, which inevitably results in confirmation
bias since the model tends to corroborate the erroneous data
(Tarvainen and Valpola 2017).

In order to combat such confirmation bias problem, co-
training based approaches have recently received a lot of at-
tention. (Han et al. 2018) suggest a co-teaching technique
that trains two models concurrently, which allows them to
choose small loss instances for one another. (Yu et al. 2019)
adopt the “Update by Disagreement” strategy to ensure the
divergence between two models, which only selects pre-
diction disagreement samples for further co-teaching. (Wei
et al. 2020) propose a joint training with co-regularization
method named JoCoR, which increases the effective num-



ber of co-training samples by formulating a joint loss with an
explicit regularization constraint. However, faced with ML-
PL problem, the above methods still face two major chal-
lenges: 1) The effective number of co-training samples is
still limited, especially whether these selected samples have
completely ground-truth labels also cannot be guaranteed in
ML-PL. 2) During the co-training process, only high confi-
dent (low loss) samples are considered while low confident
(high loss) samples are directly dropped, which leaves the
latent valuable information unused since samples with par-
tial labels tend to result in high loss in ML-PL.

To tackle the above issues, we propose a new perspec-
tive of co-training based method termed Co-Label Selec-
tion (CLS), which converts the cooperation strategy be-
tween two networks from “Sample Selection” to “Label Se-
lection”, thereby addressing the confirmation bias in self-
training while keeping training samples reserved in great
extent. Specifically, we train two networks simultaneously
to feed forward and generate the label confidence value for
each training sample. Then, each network identifies false-
negative labels for its peer network according to the rank-
ings of label confidence. Meanwhile, the non-informative
negative labels are also dropped by network itself to avoid
the learning model excessively focusing on negative la-
bels. Such operation can help to alleviate the well-known
positive-negative label imbalance issue in multi-label learn-
ing. According to the above operations, we maintain two
networks cooperate at label-level within a mini-batch to gen-
erate proper supervision signals for each other, which en-
hances the utilization of training data by label selection in-
stead of sample dropping operation. Notably, we operate la-
bel selection according to the rankings of label confidence
within all labels contained in a mini-batch, thus implicitly
modeling the label dependency and further improving the
prediction accuracy of our proposed method. The main con-
tributions of this paper are summarized as follows:

• We propose a novel co-training based ML-PL method
termed CLS, which for the first time converts the cooper-
ation strategy between two networks from “Sample Se-
lection” to “Label Selection” to avoid directly dropping
samples and reserve training data to the utmost degree.

• We denote that single “co-training” strategy (e.g., the co-
teaching algorithm or JoCoR algorithm) cannot handle
ML-PL data well, which suffers from the problem of lim-
ited effective training samples. Such argument has been
empirically justified in Section 4.

• We thoroughly evaluate our proposed method through
experiments on various datasets. And extensive results
show that CLS achieves promising performances in com-
parison with other state-of-the-art methods.

Related Work
Multi-label Learning with Partial Labels
Multi-label learning methods (Lyu et al. 2024a,b; Zhong,
Lyu, and Yang 2024; Wang et al. 2023, 2024) usually rely
heavily on high-quality labelled large-scale training data,
while in practice it is expensive and infeasible to obtain such

ideal data. On the contrary, it is easy to obtain a subset of
labels for training, which is called as Multi-label Learning
with Partial Labels (Liu et al. 2023; Gu et al. 2023; Wu et al.
2022; Jia and Zhang 2023; Liu, Jia, and Zhang 2023). To ex-
plore how to learn with incomplete annotation, (Sun, Zhang,
and Zhou 2010) construct a similarity graph for each label
and the manifold regularization term is added to recover the
missing labels. (Durand, Mehrasa, and Mori 2019) introduce
a normalized binary cross-entropy (BCE) loss that exploits
the proportion of known labels and use it to train the model
with partial label. (Huynh and Elhamifar 2020) introduce a
new loss function that regularizes the smoothness of labels
and image features to avoid overfitting to partial label. (Chen
et al. 2021a) explore semantic correlations to transfer knowl-
edge of known labels to generate pseudo labels for unknown
labels and use both known and generated labels for model
training. Although these methods have achieved competitive
performance, they learn from partial labeled data by training
with a single model, which could fall into confirmation bias
(i.e. the model is prone to confirm its mistakes) (Tarvainen
and Valpola 2017). Differently, our CLS learns two model
simultaneously and let them select proper annotations for
each other, which eliminates the negative influence of con-
firmation bias and improves model performance.

Co-training with Noisy Labels
Single-network based noisy label learning methods usually
suffer from the confirmation bias problem (Tarvainen and
Valpola 2017) and they tend to accumulate the correction
error during training, resulting in low model performance
(Feng, An, and He 2019; Min et al. 2023; Ge et al. 2022). To
avoid accumulating confirmation bias, researchers propose
to train two networks simultaneously to filter errors in a co-
training manner. For example, (Han et al. 2018) let two mod-
els back propagate data with clean labels to its peer model.
(Yu et al. 2019) select small-loss instances with different
predictions from two networks to ensure model diversity.
(Li, Socher, and Hoi 2020) leverage noisy samples by mod-
eling the per-sample loss distribution to divide the training
data to labeled and unlabeled data, and exploit all samples
in a semi-supervised manner. (Sun et al. 2021) incorporates
the low-loss sample selection strategy with label distribution
learning to capture the information in high loss instances.
The above co-training based methods focus on single-label
noisy learning, which is not suitable to multi-label data.

The Proposed Method
Given ML-PL dataset D = {(X ,Y)}, where X = {xi|ni=1}
are n training instances and Y = {yj |nj=1} are their ob-
served labels. For each instance xi, the observed labels
yi = [yi,1, yi,2, ..., yi,C ]

T ∈ [0, 1]C is a C-dimensional vec-
tor with C classes, where yi,j = 1 indicates instance xi is
annotated with label j, and yi,j = 0 otherwise. Given a mini-
batch data D̂ = {(X̂ , Ŷ)}, we divide Ŷ = {ŷ1, ŷ2, ..., ŷB}
into a positive label set ŶP = {ŷP

1 , ŷ
P
2 , ..., ŷ

P
B } and a nega-

tive label set ŶN = {ŷN
1 , ŷN

2 , ..., ŷN
B } satisfying ŷP

i ∩ŷN
i =

and ŷP
i ∪ ŷN

i = ŷi. We formulate CLS with two networks
denoted by f (x, Θf ) and g(x, Θg), where Θf and Θg are the
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Figure 2: The overall framework of CLS. Given a ML-PL dataset, we let two networks identify false-negative labels for each
other to eliminate the negative effect of missing labels and avoid confirmation bias. The well-known positive-negative imbalance
issue is also resolved by dropping non-informative negative labels by network itself.

parameters of two networks. Our CLS aims to leverage the
two networks to automatically identify false-negative and
non-informative labels, accordingly eliminating the negative
impact of missing label and avoiding confirmation bias.

Motivation
The widely used small-loss criterion, which treats data with
minimal loss as clean ones, is justified by the fact that deep
neural networks have a tendency to learn simple patterns
early before eventually overfitting to noisy samples (Arpit
et al. 2017). Thus, if we only use small loss samples in
each mini-batch data to train our model, it would be resis-
tant to noisy data. Nonetheless, most samples in ML-PL are
annotated with partial labels and tend to own high loss. Sim-
ply dropping high loss items would waste numbers of train-
ing data and further degenerate the performance of learning
model. Based on the above observations, we manipulate the
networks to cooperate at label-level rather than sample-level,
which just removes non-informative negative labels and re-
serves training samples to a considerable degree, so as to
improve the generalization of the learning model. The over-
all framework of our proposed CLS is shown in Figure 2.

Algorithm Description
Orthogonal to traditional co-training based methods that two
networks cooperate at sample-level and back propagate the
selected data from its peer network, we carefully design a
new learning manner between two networks, which aims
to encourage the two networks to cooperate at label-level
and select proper labels for each other, accordingly reserv-
ing training data in great extent and improving generaliza-
tion ability of model. Specifically, we let two peer networks
identify true negative labels for each other according to the
ranking of label losses within a mini-batch as follows:

Ŷf
N = Selmin:Rh(e)|ŶN |L(ŶN ; P̂g), (1)

Ŷg
N = Selmin:Rh(e)|ŶN |L(ŶN ; P̂f ) (2)

where Selmin indicates selecting Rh(e)|ŶN | number of la-
bels with smallest losses from ŶN , Rh(e) represents the re-
serving rate when removing high loss negative labels, e is the
round of training epoch, L is the loss function, P̂g and P̂f

are the prediction probabilities corresponding to ŶN from
two networks f (x, Θf ) and g(x, Θg), |∆| is the number of
elements contained in set ∆. By removing high loss negative
labels, we reduce the risk of misleading by false-negative la-
bels and mitigate the negative impact of partial annotation.

The inherent positive-negative imbalance in multi-label
data has been proved to result in under-emphasizing gradi-
ents from positive labels during training stage (Ridnik et al.
2021). To balance the gradients from positive and nega-
tive labels, we design a scheme that networks remove non-
informative (low loss) negative labels for themselves as:

Ŷf ′
N = Selmax:Rl(e)|Ŷf

N |L(Ŷ
f
N ; P̂f ′), (3)

Ŷg′
N = Selmax:Rl(e)|Ŷg

N |L(Ŷ
g
N ; P̂g′), (4)

where Selmax means selecting Rl(e)|Ŷf
N | (or Rl(e)|Ŷg

N |)
number of labels with largest losses from Ŷf

N (or Ŷg
N ), Rl(e)

indicates the reserving ratio when removing low loss neg-
ative labels, P̂f ′ and P̂g′ represent the prediction proba-
bilities corresponding to Ŷf

N and Ŷg
N from f (x, Θf ) and

g(x, Θg) respectively. With a proper threshold, the gradients
from positive labels and negative labels can be balanced,
which encourages the model to treat the positive and neg-
ative labels equally and improves the robustness of learning
model. Meanwhile, removing low loss negative labels can
also avoid model being over-confident on negative labels,
which further decreases the risk of model misled by false-
negative labels.

In our model, the high loss labels are selected by the peer
network to avoid confirmation bias, while the low loss neg-
ative labels are selected by the network itself to balance
the gradients from positive labels and negative labels. By
concatenating the above selected negative labels and all ob-
served positive labels, we obtain the final label sets Ŷf =



Algorithm 1: CLS: Co-Label Selection

Input: Training Data D; Networks Θf and Θg; Epoch
Emax and Ek; Batch Size B; Label Selection Rate τh
and τl, and Learning Rate η;

1: for e = 1, 2, . . . , Emax do
2: Shuffle D into |D|

B mini-batches;
3: for i = 1,..., |D|

B do
4: Fetch i-th mini-batch D̂ = {(X̂ , Ŷ)} from D
5: Calculate Pf = f (X̂ , Θf ) and Pg = g(X̂ , Θg);

/* avoid confirmation bias */
6: Obtain true negative label sets Ŷf

N by (1) in ŶN ,
and Ŷg

N by (2) in ŶN , respectively;
/* resolve positive-negative label imbalance */

7: Obtain informative label set Ŷf ′
N by (3) in Ŷf

N , and
Ŷg′
N by (4) in Ŷf

N , respectively;
8: Obtain label set Ŷf by (5) and Ŷg by (6);
9: Calculate Lf by (7) on Ŷf , and Lg by (8) on Ŷg;

10: Update Θf = Θf - η∇Lf and Θg = Θg - η∇Lg;
11: end for
12: Update Rl(e) = 1 - min{ e

Ek
τl, τl} and Rh(e) = 1 -

min{ e
Ek

τh, τh}
13: end for
Output: Θf and Θg

{ŷf
1 , ŷ

f
2 , ..., ŷ

f
B} and Ŷg = {ŷg

1 , ŷ
g
2 , ..., ŷ

g
B} for f (x, Θf ) and

g(x, Θg) as follows:

Ŷf = Ŷf ′
N ∪ ŶP , (5)

Ŷg = Ŷg′
N ∪ ŶP . (6)

After selecting the final supervised signals for each net-
work, we calculate the loss for f (x, Θf ) and g(x, Θg)
on these selected labels and their corresponding prediction
probabilities pf

i and pg
i for further back propagation:

Lf =
1

B

B∑
i=1

L(ŷf
i ;p

f
i ), (7)

Lg =
1

B

B∑
i=1

L(ŷg
i ;p

g
i ). (8)

Algorithm 1 describes the training process of our pro-
posed CLS, where we train two deep neural networks in a
mini-batch manner. It is worth mentioning that we update
reserving rate Rl(e) and Rh(e) according to the number of
training epochs (Step 12 in Algorithm 1). At the beginning
of training, we reserve more training samples (with large re-
serving rate Rl(e) and Rh(e)) in each mini-batch since deep
networks would fit clean data first (Wei et al. 2020). With the
increasing of epochs, we gradually decrease reserving rate
Rl(e) and Rh(e), and maintain fewer training signals in each
mini-batch until reaching 1−τl and 1−τh respectively. Such
operation will prevent deep networks from over-fitting noisy
data (Han et al. 2018). By cooperating two networks at label-
level instead of sample-level and letting them select clean

Table 1: Comparisons between our proposed CLS and other
related approaches. “Cross Update”: update parameters in
a cross manner instead of parallel manner; “Joint Train-
ing”: train two networks with a joint loss; “Disagreement”:
update two networks only on disagreed examples; “Agree-
ment”: maximize the agreement of two networks by regu-
larization; “Label Selection”: regard high loss labels as false
negative labels; “Sample Selection”: regard high loss sam-
ples as noisy samples. [1]: Co-teaching (Han et al. 2018);
[2]: Decoupling (Malach and Shalev-Shwartz 2017); [3]:
Co-teaching+ (Yu et al. 2019); [4]: JoCoR (Wei et al. 2020).

Strategy [1] [2] [3] [4] Ours
Cross Update " % " % "

Joint Training % % % " %

Disagreement % " " % %

Agreement % % % " %

Label Selection % % % % "

Sample Selection " " " " %

labels for each other, CLS can not only alleviate the nega-
tive impact of incomplete annotation, but also reserve train-
ing data in most extent, which improves the performance
of learning model. Meanwhile, label selection operation in
CLS can effectively avoid our model being misled by false-
negative labels, especially for the extreme case of ML-PL,
where instances are annotated with only one relevant label.
Based on the above observations, we argue that the improve-
ment of CLS in comparison with traditional methods should
increase more significantly as the missing rate growing, and
such argument has clearly been supported by later section.

Relations to Other Approaches
To further illustrate the connections among co-training ap-
proaches, we compare CLS with other related approaches
in Table 1. Specifically, Co-teaching (Han et al. 2018)
trains two networks in a “Cross-Update” manner to reduce
the accumulated error flow while Decoupling (Malach and
Shalev-Shwartz 2017) selects instances following the “Dis-
agreement” manner. Co-teaching+ (Yu et al. 2019) incor-
porates the “Disagreement” strategy and the “Cross Up-
date” strategy to achieve better performance. JoCoR (Wei
et al. 2020) selects small loss examples while updates the
network parameters by “Joint Training”, which contains a
co-regularization scheme to maximize the agreement be-
tween two networks. Compared with “Disagreement” strat-
egy, Joint Training achieves better performance by adopting
an explicit regularization to increase the effective number of
selected training data during model co-training. However, it
still directly drops possible noisy samples while with mean-
ingful supervised signals, causing the waste of training data.
Based on this observation, we convert the cooperation strat-
egy between two networks from “Sample Selection” strat-
egy to “Label Selection”, which avoids directly dropping
samples and reserves training data to a considerable degree,
further improving the performance of learning model.



MS-COCO 75% labels left 50% labels left 25% labels left single label
mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1

ML-GCN 71.4 63.1 66.5 67.5 45.5 51.1 63.3 37.6 30.3 64.2 38.6 32.0
CTRAN 72.1 64.5 70.0 68.8 49.0 52.4 64.4 33.3 29.0 65.3 31.0 29.9

ASL 72.5 62.4 67.7 69.7 49.5 54.0 65.4 34.8 29.1 66.2 31.2 23.7
Co-teaching 72.7 63.0 68.3 69.7 49.3 52.0 65.3 37.2 31.4 65.8 34.8 24.5

Co-teaching+ 72.4 64.3 68.6 69.5 52.3 53.6 65.2 39.9 36.1 65.6 35.7 25.6
JoCoR 72.7 63.2 69.0 70.2 50.7 56.9 66.1 33.9 26.7 66.1 31.5 23.4
WAN 67.7 40.3 37.0 65.5 43.5 39.2 62.0 45.2 41.1 63.9 53.3 51.7
ROLE 72.2 59.5 63.4 69.5 46.4 50.2 65.4 34.9 31.3 66.4 38.2 30.6
CLS 72.8 64.1 69.3 70.9 65.7 70.4 67.2 54.5 60.4 67.4 61.2 66.3

PASCAL VOC 2007 75% labels left 50% labels left 25% labels left single label
mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1

ML-GCN 86.0 78.9 80.2 83.6 72.5 75.3 80.5 68.3 64.3 83.5 67.7 69.5
CTRAN 87.8 80.1 82.2 85.2 75.2 77.1 82.1 70.0 65.1 84.9 69.9 70.2

ASL 88.4 63.2 59.9 86.0 63.3 58.6 82.7 58.7 55.9 85.8 67.5 63.9
Co-teaching 88.4 80.7 83.7 86.6 76.3 76.9 83.9 70.8 71.3 86.5 71.5 70.1

Co-teaching+ 88.4 80.7 81.5 86.7 77.1 78.1 84.3 71.7 72.0 86.5 73.7 73.0
JoCoR 88.6 80.4 81.8 87.0 77.1 77.7 84.1 70.3 71.4 86.3 71.3 70.7
WAN 85.5 70.2 65.1 83.0 70.1 67.0 79.2 67.4 65.6 84.2 75.2 74.0
ROLE 89.3 72.0 71.6 88.0 72.5 72.6 84.5 71.1 71.9 87.7 77.9 79.6
CLS 89.0 82.0 83.5 88.1 80.6 83.0 85.2 77.6 80.1 88.6 81.0 83.4

NUS-WIDE 75% labels left 50% labels left 25% labels left single label
mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1 mAP CF1 OF1

ML-GCN 57.3 49.8 64.2 55.0 40.2 50.3 51.2 28.8 32.2 51.5 28.7 30.2
CTRAN 58.1 51.2 67.5 56.1 41.5 52.0 51.6 30.0 33.8 52.1 30.0 31.8

ASL 58.7 56.1 67.4 56.6 57.2 69.5 52.7 54.2 68.7 53.2 56.0 69.0
Co-teaching 57.8 50.8 66.8 55.8 41.0 51.0 51.5 29.8 33.1 52.0 30.2 31.0

Co-teaching+ 58.0 50.5 67.0 56.0 41.2 51.8 51.5 30.0 32.2 51.9 26.8 31.2
JoCoR 58.3 51.1 67.9 56.2 41.8 52.2 52.1 29.9 34.8 52.4 28.1 33.2
WAN 55.3 38.0 44.2 53.7 40.9 49.9 50.0 37.2 46.2 50.1 38.0 46.5
ROLE 57.7 43.8 53.7 55.2 43.7 54.6 50.5 42.2 55.2 50.9 48.0 63.2
CLS 58.9 52.1 70.7 57.0 49.3 69.1 53.4 45.2 66.6 54.1 48.0 67.2

Table 2: Comparisons with state-of-the-art methods on MS-COCO, PASCAL VOC 2007 and NUS-WIDE datasets. The best
results are presented in bold and the second-best are in underline.

Experiments
Experiment Setup
Datasets We employ three multi-label datasets, including
MS-COCO (Lin et al. 2014), PASCAL VOC 2007 (Ever-
ingham et al. 2010) and NUS-WIDE (Chua et al. 2009).
Since these datasets are fully annotated, we follow (Chen
et al. 2021b) to randomly drop some positive labels to gen-
erate ML-PL datasets according to a dropping rate α, where
α ∈ {25%, 50%, 75%} indicates the proportion of dropped
positive labels. Besides, we consider the extreme case of
ML-PL, where each instance is annotated with only one rel-
evant label. Following (Cole et al. 2021), we randomly select
one positive label for each instance to generate such dataset.

Evaluation Metrics We employ three popular multi-label
metrics to evaluate each comparing method, including mean
Average Precision (mAP), Overall F1-score (OF1) and per-
Class F1-score (CF1) (Shen et al. 2021; Chen et al. 2019).

Implementation Details For fair comparison, we adopt
Resnet-50 (He et al. 2016) network pre-trained on Ima-
geNet (Deng et al. 2009) as feature extraction backbone for
all methods. The input images are squished and randomly
cropped into 224 × 224. Adam is used as the optimizer with
a weight decay of 10−4. The batch size is set to 120 for all
datasets. We run 100 epochs in total with an initial learning
rate of 4× 10−5 and decrease it to 0 using cosine decay. We
adopt Binary Cross Entropy loss as our loss function. We set
the ratio of selection rate Rh(e) and Rl(e) as follows: Rh(e)
= 1 - min{ e

Ek
τh, τh}, Rl(e) = 1 - min{ e

Ek
τl, τl}, where τl

= 0.02 for PASCAL VOC 2007 dataset, and τl = 0.06 for
NUS-WIDE dataset and MS-COCO dataset. Ek is set to 10
for all datasets. The values of τh are {0.002, 0.003, 0.005,
0.005}, {0.005, 0.010, 0.012, 0.012}, and {0.006, 0.012,
0.020, 0.020} on PASCAL VOC 2007 dataset, MS-COCO
dataset, and NUS-WIDE dataset under four configurations
respectively, which are found through cross-validation. Our
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Figure 3: The qualitative results of our CLS.

method is implemented based on PyTorch. We train our
model in an end-to-end manner and accomplish all exper-
iments on a computer with an Intel (R) Xeon (R) CPU E5-
2620, 64 GB main memory, and two TITAN Xp GPUs.

Comparison with State-of-the-Art Methods
We employ eights methods from three categories for com-
parison: 1) ML-GCN (Chen et al. 2019), CTRAN (Lan-
chantin et al. 2021) and ASL (Ridnik et al. 2021), which
achieve state-of-the-art performances on classical multi-
label image recognition task. 2) Co-teaching (Han et al.
2018), Co-teaching+ (Yu et al. 2019) and JoCoR (Wei et al.
2020), which adopt “Sample Selection” strategy to handle
noisy label learning. We replace their original loss function
with Binary Cross Entropy loss to satisfy ML-PL problem.
3) WAN (Cole et al. 2021) and ROLE (Cole et al. 2021),
which achieve state-of-the-art performances on solving the
extreme case of ML-PL, where each instance is annotated
with only single positive label. Table 2 reports the experi-
mental results on all employed datasets. We can observe:
• On MS-COCO dataset, CLS performs the best in all

four cases. Although few methods can achieve compa-
rable performance under the configuration of 75% labels
left, CLS significantly outperforms them in other three
cases. Especially, as the missing rate increases, the im-
provements become more significant, e.g. mAP improves
1.1% and 1.3% when training with 25% labels left and
single label in comparison with JoCoR.

• On PASCAL VOC 2007 dataset, CLS outperforms most
comparing methods under all configurations, e.g., it out-
performs advancing ASL and ML-GCN by 2.8% and
5.1% under the configuration of single label. Although
CLS is 0.3% inferior to ROLE under the configuration
of 75% labels left, we attribute such phenomenon to the
property of PASCAL VOC 2007 that it just covers 5011
training images from 20 categories, which is more simple
than MS-COCO and NUS-WIDE. For other configuara-
tion cases, CLS outperforms ROLE by 0.1%, 0.7%, and
0.9% respectively, which demonstrates that our proposed
method is robust to false-negative labels.

• On NUS-WIDE dataset, CLS obtains the best perfor-
mance over all four cases. Especially, for such heavy
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Figure 4: Results of visualization on MS-COCO dataset.(a)
25% labels left; (b) single label.

positive-negative label imbalance data, CLS outperform
JoCoR by 0.6%, 0.8%, 1.3%, 1.7%, respectively. Mean-
while, it also outperforms state-of-the-art single positive
methods ROLE by 3.2% under the case of single pos-
itive label configuration. Besides, in comparison with
ASL method, which introduces a novel asymmetric loss
to handle the positive-negative imbalance, CLS still out-
performs it by 0.2%, 0.4%, 0.7%, 0.9% under four cases.
These results strongly verify the effectiveness of our pro-
posed method on solving label imbalance problem.

Further Analysis
Qualitative Results We present the qualitative results of
CLS in Figure 3. Obs means the observed positive labels in
training set, arrow indicates the positive labels predicted by
our CLS during training, and Anno indicates annotated pos-
itive labels in the original dataset. The blue labels indicate
the corresponding labels are identified as false negative la-
bels and belong to the annotated labels, while the red labels
indicate the corresponding labels are identified as false neg-
ative labels but do not belong to the annotated labels. It can
be seen that although only a few ground truth positive labels
are available, our method can still distinguish most false-
negative and true-negative labels. Specifically, our CLS suc-
cessfully identifies four false-negative labels in total five ab-
sent annotated positive labels. Although our CLS confuses
the similar category Car and Truck in Figure 3.(b), we ob-
serve that CLS can correctly identify Sky as false-negative
labels, which is not annotated in the original dataset. Such
phenomenon verifies that CLS successfully keeps the model
from memorizing false-negative labels.

Visualization on eliminating confirmation bias We
show mAP vs. epochs on MS-COCO in Figure 4. In all four
plots, we can observe the memorization effect of networks.
Specifically, the performance of single-network based meth-
ods (ASL and ROLE) increases rapidly in the first few
epochs, but decreases significantly in the following epochs.
In contrast, co-training based methods (CLS and JoCoR) can
well alleviate or even prevent the decreasing trend, which
demonstrates the superiority of co-training strategy on elim-
inating confirmation bias. Meanwhile, for co-training based
JoCoR, our proposed CLS outperforms it in all four cases.
We attribute such success to “Label Selection” cooperation
strategy that can exploit most training data in comparison
with “Sample Selection” strategy.
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Figure 5: Comparison with Co-Label Correction on MS-
COCO. (a) 25% labels left; (b) single label.
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Figure 6: Results of ablation studies on MS-COCO dataset.
(a) 25% labels left; (b) single label.

Label Correction or Label Selection? In our model, we
let the two networks remove false-negative labels for subse-
quent model training. A straightforward question arises that
what if we correct false-negative labels. To verify this idea,
we conduct an experiment on MS-COCO dataset. As shown
in Figure 5, although Co-Label Correction (CLC) reaches
comparable performance with CLS in the first 5 epochs, its
performance is significantly inferior to CLS in all the subse-
quent epoches. Such phenomenon come from the label cor-
rection operation that CLC corrects labels according to the
ranking of label loss within a mini-batch, which introduces
misleading supervised information (see Figure 3.(c) for an
example), further degrading model performance. However,
CLS just removes non-informative negative labels, which
can effectively alleviate the negative influence of missing la-
bel and improve the generalization of learning model.

Ablation Studies We conduct ablation study to evaluate
the impact of key components in CLS. Specifically, “CLS-
H” means our CLS without the module of high loss neg-
ative labels removing and “CLS-L” means our CLS with-
out the module of low loss negative labels removing. As il-
lustrated in Figure 6, we find “CLS-H” suffers significant
performance drop in comparison with CLS, which verifies
the negative impact of false-negative labels can be allevi-
ated by removing high loss negative labels. We also find
that CLS consistently outperforms “CLS-L” during the en-
tire training epochs, which demonstrates that removing non-
informative negative labels alleviates positive-negative im-
balance and forces the model to focus on informative labels.
Meanwhile, the phenomenon that “Co-teaching” performs
worst in last 50 epochs evaluates the superiority of “Label
Selection” strategy in comparison with “Sample Selection”.

Hyperparameters Sensitivity Analysis To explore the
effects of different values of hyperparameters, we conduct
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Figure 7: Accuracy comparisons with different τh on MS-
COCO. (a) 25% labels left; (b) single label.
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Figure 8: Accuracy comparisons with different τl on MS-
COCO. (a) 25% labels left; (b) single label.

sensitivity analysis for τl and τh on MS-COCO dataset. We
vary the estimated noise rate τh among {0, 0.003, 0.006, ...,
0.021}, and show the results in Figure 7. As shown in Fig-
ure 7, when filtering out the negative labels of high losses
(i.e. false negative labels), multi-label recognition accuracy
is boosted. However, when too many negative labels are fil-
tered out, the accuracy drops since high loss true negative
labels are also ignored. Similarly, we vary the values of the
dropping rate of low loss negative labels τl among {0, 0.02,
0.04, ..., 0.14}. As shown in Figure 8, balancing the weights
between positive labels and negative labels by dropping low
loss negative labels has positive contribution to model per-
formance, where it achieves the best balance when τl = 0.06.
Note that filtering out high loss true negative labels will de-
grade model performance since model have not learned from
these labels enough, while filtering out low loss true negative
labels can balance the weights between positive and negative
labels, and force model to learn more from informative la-
bels, further improving model performance.

Conclusion
In this paper, we proposed an effective approach termed CLS
to tackle ML-PL problem, which trains two networks simul-
taneously and let them remove false-negative labels for each
other to alleviate the negative effect of incomplete annota-
tion and avoid confirmation bias. Since “small sample loss”
criteria would drop more valuable trainig data in ML-PL,
we convert the correlation strategy between peer networks
from “Sample Selection” to “Label Selection”, accordingly
reserving training data in most extent. By removing non-
informative negative labels, the highly imbalance between
positive and negative labels is also alleviated. Extensive re-
sults have verified the effectiveness of CLS.
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