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Abstract

Federated Multi-View Clustering (FMVC) aims to learn a
global clustering model from heterogeneous data distributed
across different devices, where each device only stores one
view of all clustering samples. The key to deal with such
problem lies in how to effectively fuse these heterogeneous
samples while strictly preserve the data privacy across mul-
tiple devices. In this paper, we propose a novel structural
graph learning framework named MGCD, which leverages
both consistency and diversity of multi-view graph struc-
ture across global view-fusion server and local view-specific
clients to achieve desired clustering while better preserves
data privacy. Specifically, in each local client, we design a
dual autoencoder to extract the latent consensuses and speci-
ficities of each view, where self-representation construction
is introduced to generate the corresponding view-specific di-
versity graph. In the global server, the consistency implied in
uploaded diversity graphs are further distilled and then incor-
porated into the consistency graph for subsequent cross-view
contrastive fusion. During the training process, the server
generates a global consistency graph and distributes it to each
client for assisting in diversity graph construction, while the
clients extract view-specific information and upload it to the
server for more reliable consistency graph generation. The
“server-client” interaction is conducted in an iterative man-
ner, where the consistency implied in each local client is grad-
ually aggregated into the global consistency graph, and the
final clustering results are obtained by spectral clustering on
the desired global consistency graph. Extensive experiments
on various datasets have demonstrated the effectiveness of
our proposed method on clustering federated multi-view data.

Introduction
Multi-view data is usually collected from multiple sources,
which is represented by several heterogeneous features. For
instance, in personal cyber behavioral analysis, diversified
individual information are collected from different network
platforms and retained in their associated institutions. If we
want to give a reliable analysis results, we need to compre-
hensively consider all personal information held by different
institutions. However, in the practical scenarios, these indi-
vidual sensitive information are prohibited to be exchanged
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across different institutions since the data privacy is being
emphasized. Under such conditions, traditional multi-view
learning methods lose their capability to effectively con-
duct cross-source information fusion and can not compre-
hensively represent the feature properties of each individual
person.

The key to learn from such sensitive multi-view data lies
in how to fuse these heterogeneous cross-source features ef-
ficiently while preserve the data secrecy of each indepen-
dent data source. Recently, federated multi-view learning
provides an effective solution, which deploys the multi-view
clustering method into federated learning framework and
fuses these multi-source feature information into a consis-
tency representation for subsequent clustering. For instance,
(Huang et al. 2022) proposed a matrix decomposition based
method, which orthogonally decomposes the view-specific
sample matrix in each client into a basis matrix and a rep-
resentation matrix and then the representation matrix is up-
loaded to the sever to mine cross-view consistency for clus-
tering. (Chen et al. 2023) proposed a deep neural network
based method, which generates view-specific latent repre-
sentation by using deep autoencoder in each client and then
uploads these representations to the sever to mine cross-view
consistency. However, the above federated multi-view clus-
tering methods suffer from some common limitations: (1)
All of the above methods leverage cross-view fusion on the
latent feature representations uploaded by the clients, which
is easily susceptible to model inversion attacks (Sun et al.
2021). (2) These methods only consider cross-view consis-
tencies while the view-specific diversities are regrettably ig-
nored, which naturally results in a suboptimal performance
for the final clustering.

To address the above issues, in this paper, we propose a
novel structural graph learning framework for multi-view
clustering named MGCD, which leverages both consis-
tency and diversity of multi-view graph structure across
global view-fusion server and local view-specific clients to
achieve desired clustering while better preserves data pri-
vacy. Specifically, in each local client, we first design a dual
autoencoder to extract the consensus and specific representa-
tions of samples respectively, where the two representations
can jointly recover the original data to prevent deviation. Af-
terwards, a unique self-representation reconstruction is in-
troduced to generate diversity graph that represents latent



Figure 1: The “server-client” interaction of MGCD.

view-specific diversity relations, where the generation of di-
versity graph is independent to consensus representation to
avoid its negative interference. In the global server, the di-
versity graphs uploaded from clients are further distilled to
refine its implicit consistency information, and these infor-
mation are incorporated into the last-round global consis-
tency graph for cross-view contrastive fusion to generate the
current-round global consistency graph. During the whole
training process, different from previous methods that the
cross-view consistency extracted by server is only used to
guide clients’ training, our model pass it to the next-round
server’s training. As shown in Figure 1, the “server-client”
interaction is conducted in an iterative manner like recur-
rent neural network, where the server model receive last-
round global consistency graph and then enhance its consis-
tency by distilling consistency implied in view-specific lo-
cal diversity graphs, which makes the consistency implied in
each local client is gradually aggregated into the global con-
sistency graph and the final clustering results are obtained
by spectral clustering based on the final global consistency
graph. In summary, the main contributions of our paper lies
in the following aspects:

• We propose a novel structured graph learning framework
MGCD for federated multi-view clustering, which lever-
ages both consistency and diversity across global view-
fusion server and local view-specific clients to achieve
desired clustering while preserves data privacy.

• Compared with previous methods, our method is more
secure and effective, which is attributed to the employed
safer graph structure to alleviate model inversion attacks
and the consistency & diversity measurements to gener-
ate more desired global consistency graph.

• Extensive experimental results on various datasets have
demonstrated that our proposed model exhibits superior
performance against other state-of-the-art algorithms.

Related Work
Multi-view Clustering
Multi-view clustering, unsupervisedly fusing the multi-view
data to aid differentiate crucial grouping, is a fundamental
task in the fields of data mining (Lyu et al. 2024a,b; Zhong,
Lyu, and Yang 2024; Gu et al. 2023; Diallo et al. 2023; Xu
et al. 2024; Ma et al. 2024), pattern recognition (Liu et al.
2023; Jiang et al. 2022; Zhang et al. 2023; Liu and Tsang
2017; Hu et al. 2024a; Tao et al. 2022), etc. The key to

deal with such problem lies in how to fuse cross-view in-
formation and obtain consistent representation for cluster-
ing. Current multi-view clustering methods are mainly di-
vided into two categories, i.e., subspace-based methods and
graph-based methods. For instance, (Wu, Feng, and Yuan
2024) propose a subspace-based method, which first em-
beds the multi-view features into a unified kernel tensor and
then utilizes the low-rank kernel tensor constraint to cap-
ture the consistency information. (Yan et al. 2023) propose a
subspace-based method, which uses the autoencoder to learn
the latent representation of each view and then introduces
constrastive learning to extract cross-view consistent repre-
sentation. (Wang et al. 2023) propose a graph-based method,
which first learns a graph structure of each view by self-
representation learning and then generates the consistency
graph by fusing these graph structures.

Federated Multi-View Clustering
Federated multi-view clustering aims to cluster multi-view
data where the data is distributed among different devices
(Huang et al. 2022; Chen and Zhang 2022; Li, Yao, and
Liu 2023; Hu et al. 2024b). The key to deal with such prob-
lem lies in how to fusion cross-view information under the
premise of data privacy. For example, (Ren et al. 2024) pro-
pose a self-supervised method, which uses the global con-
sistency prototype from server as self-supervised informa-
tion to update the latent representation of the sample in each
client and then the server combines these representations
from clients to update the global consistent prototype. (Chen
et al. 2023) propose a deep learning method, which gen-
erates view-specific latent representation by deep autoen-
coder in each client and then the server aligns these repre-
sentations to mine for consistency representation. Although
these methods have made competitive performance in feder-
ated multi-view clustering, they still suffer from some draw-
backs. (1) Directly sharing the representations of clients are
vulnerable to model inversion attacks. (2) These methods
only measure cross-view consistency while ignore diversity.

Methodology
In federated multi-view learning, the learning process is gen-
erally decomposed into two parts: one global server and
multiple local clients. Formally speaking, multi-view data
with V views, denoted by X =

{
X1,X2, . . . ,XV

}
, are dis-

tributed among V different clients. For each client v, its data
are represented as Xv ∈ RN×Dv , where Dv is the dimen-
sionality of samples in view v and N is the number of sam-
ples, v = 1, ...,V . The goal of federated multi-view cluster-
ing is to fuse these distributed views in different clients and
extract consistency in the global server for subsequent clus-
tering. Notably, during the whole learning process, the data
privacy in each client are strictly emphasized and preserved.

Formulation
In this paper, we propose a novel graph-based federated
multi-view clustering framework named MGCD, which
leverages both consistency and diversity of multi-view graph
structure across global server and local clients to achieve



Figure 2: The overview of MGCD, which contains a global server and V local clients. In each global training epoch t, the
server firstly distributes global consistency graph Gt−1

c to V clients to guide clients’ training. Then, each client v generates its
corresponding local diversity graph Gv

d in collaboration with Gt−1
c . Afterwards, these diversity graphs are sent to the server

and further distilled to extract their remaining consistency. Finally, these extracted consistency are incorporated into Gt−1
c for

contrastive fusion to generate the current global consistency graph Gt
c. After T global training epochs, the desired consistency

graph GT
c is obtained, which is applied to spectral clustering for the final clustering results.

desired clustering while better preserves data privacy. Fol-
lowing previous “server-client” federated architecture, we
also decompose our training process into two parts: Local
Training in clients and Global Training in server. During
each training epoch t, the server first receives the last-round
global consistency graph Gt−1

c and distributes it to each
client. Then, under the guidance of Gt−1

c , each client con-
ducts their own local training and generates the correspond-
ing local diversity graph Gv

d to upload to the server. After-
wards, the server conducts its global training and fuse cross-
view consistency to Gt−1

c to generate the global consistency
graph Gt

c. The above operation are conducted in an iterative
manner, where the consistent information implied in each lo-
cal client is gradually aggregated into the global consistency
graph, and the final clustering results are obtained by spec-
tral clustering on the final global consistency graph. Figure
2 illustrates the overview of our proposed method.

Local Training In each client v, we separately conduct its
own local training to generate the corresponding local diver-
sity graph Gv

d and upload it to the server for further cross-
view fusion. Specifically, we first design a dual autoencoder
to extract consensus representation Zv

c ∈ RN×dv and speci-
ficity representation Zv

d ∈ RN×dv of Xv respectively, where
the dual autoencoder consists of two dual encoders (consen-
sus encoder Ev

c (X
v) : Xv 7→ Zv

c and specificity encoder
Ev

d (X
v) : Xv 7→ Zv

d) and a decoder Dv (Zv) : Zv ∈
RN×dv 7→ Xv

pre ∈ RN×Dv . To force the capability of the
representations (Zv

c and Zv
d) in recovering complete feature

information for each client, a reconstruction loss between
the original features Xv and the corresponding reconstructed
features Xv

pre is defined as follows:

Lv
r = ∥Xv −Dv (Zv)∥2F = ∥Xv −Dv (Zv

c + Zv
d)∥

2
F

= ∥Xv −Dv (Ev
c (X

v) + Ev
d (X

v))∥2F ,
(1)

where Zv = Zv
c + Zv

d ∈ RN×dv indicates the complete rep-
resentation of Xv , and dv is the dimensionality of latent rep-
resentation in v-th client. In traditional federated multi-view
learning methods, the above generated representation Zv (or
Zv
c and Zv

d) is directly uploaded to the server for subsequent
cross-view fusion. However, in real-world scenarios, such
operation carries a significant risk of data leakage since the
sever can easily recover the original data by model inversion
attack (Sun et al. 2021), especially when the attacker tests
out these latent representations come from autoencoder.

To alleviate the model inversion attack and preserve the
data security, we intend to bypass traditional feature repre-
sentation uploading and instead employ the graph structure
uploading that only uploads sample relationships to server
for subsequent cross-view fusion. Specifically, we define
the self-representation term as Zv = GvZv and utilize a
self-representation function fv

d (· ) to generate local diversity
graph Gv

d of each client v with the following loss functions:

Lv
s = ∥Zv − GvZv∥2F
=

∥∥Zv −
(
Gt−1

c + Gv
d

)
Zv

∥∥2
F
,

s.t. diag (Gv) = 0,

(2)



Algorithm 1: The Training Process of MGCD.

Input: Multi-view data X =
{

X1,X2, . . . ,XV
}

dis-
tributed in V clients; The number of training epoch T .

Output: Clustering results
1: Initialize global consistency graph G0

c in server;
2: for epoch t = 1 to T
3: The clients for v = 1 to V in parallel:
4: if t == 1 then
5: Initialize {Ev

c ,Ev
d,Dv} by minimizing Eq.(1);

6: end if
7: Receive Gt−1

c from server;
8: Local training by Eq.(3) to obtain Gv

d;
9: Upload Gv

d to server;
10: The server:
11: Receive

{
G1

d,G2
d, ...,GV

d

}
from clients;

12: Global training by Eq.(6) to obtain Gt
c;

13: Distribute Gt
c to clients;

14: end for
15: Perform spectral clustering on GT

c .

where Gv = Gt−1
c + Gv

d ∈ RN×N is the complete graph
in v-th client, Gt−1

c ∈ RN×N is the consistency graph dis-
tributed from the server, and fv

d (· ) is a fully connected layer.
In our method, we employ the global consistency graph
Gt−1

c to guide the generation of local diversity graph Gv
d,

where Gt−1
c represents the consistency that the server has

extracted. Therefore, under the guidance of Gt−1
c , the un-

extracted consistency in Xv will be first transfered to Gv
d in

client v and then further distilled to generate more compact
global consistency graph in the server. The whole loss func-
tion in each client is represented as:

Lv
client = Lv

r + γLv
s , (3)

where γ is a trade-off coefficient between reconstruction loss
and self-representation loss. After local training, the gener-
ated Gv

d is uploaded to the server for further global training.

Global Training In the server, we receive the diversity
graphs from clients and conduct a unified global training to
generate the global consistency graph Gt

c, which is utilized
for the final clustering. During the global training process,
both the consistency and diversity of multi-view graph struc-
ture are measured simultaneously to make Gt

c more compact
so as to improve the final clustering performance. Specifi-
cally, considering that the diversity graph Gv

d uploaded from
clients still contains some consistent information, we further
distill these diversity graphs and integrate the distilled con-
sistent information into Gt−1

c to generate the refined consis-
tency graph Gc_v = fpost

(
fpre (Gv

d) + Gt−1
c

)
∈ RN×N ,

where fpre(· ) and fpost(· ) are two fully connect layers that
distill the consistent information from Gv

d and fuse the dis-
tilled consistent information into Gt−1

c , respectively.
(1) Graph Consistency Measurement. The above dis-

tillation operation generates V refined consistency graphs
{Gc_v}Vv=1, whose consistency are further measured to real-

ize cross-view fusion. Specifically, we design a graph con-
trastive fusion strategy, which applies contrastive learning
into the refined consistency graphs {Gc_v}Vv=1. Such strat-
egy encourages the similarity relationship {gvi }

V
v=1 of each

instance across different views to be consistent while re-
quires the similarity relationship of diverse instance to be
different, where gvi are the i-th row of the graph Gc_v and in-
dicates the similarity between the i-th instance and other in-
stances. When formulating the graph contrastive fusion loss,
we select {(gvi , gqi ) , v ̸= q} to serve as positive pairs and the
other relationship pairs to be negative pairs. Accordingly,
our designed graph contrastive fusion loss is formulated as:

Lcl = − 1

N

N∑
i=1

∑
1<v<q<V

log
es(gvi ,g

q
i )/τg∑N

i,j=1 i
̸= j

∑V
p=1 e

s(gvi ,g
p
j )/τg

,

(4)
where s(gvi , gqi ) is similarity between gvi and gqi measured
by consine distance, τg is a tunable hyper-parameter for the
softmax temperature.

(2) Graph Diversity Measurement. While measuring
the graph consistency of the refined {Gc_v}Vv=1, the specific
information in Gv

d is remained as a refined diversity graph
Gc_d ∈ RN×N , where Gt−1

c + Gv
d = Gc_v + Gd_v . In

real-world scenarios, the Gd_v tends to contain both view-
specific information and noises/outliers in each individual
view, which is generally sparse across different views. Thus,
we measure the graph diversity by minimizing the sum of
the products among {Gd_v}Vv=1:

Ldd =

V∑
v,q=1 v

̸= q

Tr
(
(Gd_v) (Gd_q)

T
)
, (5)

where Tr(· ) represents the trace of a matrix.
By measuring multi-view graph consistency and diver-

sity simultaneously in Global Training, we can enforce all
consistent information from different clients into the consis-
tency graph {Gc_v}Vv=1 and store extra view-specific infor-
mation or noises/outliers in the diversity graph {Gd_v}Vv=1,
which can jointly contribute to generate a more compact
global consistency graph Gt

c = 1
V

∑V
v=1 Gc_v . The whole

loss function in the global server is represented as:

Lserver = Lcl + λLdd. (6)

Optimization
Algorithm 1 summarizes the training process of MGCD,
which consists of two main parts: the clients and the server,
where the clients perform local training in parallel and the
server conducts global training for multi-view fusion. At
each training epoch t, each client first receives the global
consistency graph Gt−1

c and conducts local training to gen-
erate its local diversity graph Gv

d. Then, these local diversity
graphs are uploaded to the server for global training, which
generates the global consistency graph Gt

c and distribute it to
clients for the next round training. After T round iterations,
we obtain the desired global consistency graph GT

c , which
can perform spectral clustering on it for clustering results.



The Superiorities of MGCD
1) Our proposed MGCD is more secure. In local client,
we upload the graph structure to the server instead of the
auto-encoder feature representations, which can effectively
alleviate the model inversion attack and reduce the risk of
data leakage. Especially, our graph structure only contains
instance similarity relationship while not contains any latent
feature representations, which can prevent the attacker from
recovering the original data easily even if he has tested out
the data generation strategy in clients.
2) Our proposed MGCD is more effective. In global
server, we leverages both consistency and diversity of multi-
view graph structure to generate more compact global con-
sistency graph for clustering. Compared with previous meth-
ods that only measure consistency, such operation can grad-
ually aggregate the consistency information from different
clients into the global consistency graph while store the re-
maining view-specific information and noises/outliers in the
corresponding diversity graphs.

The Further Explanation of MGCD
1) What is the diversity in MGCD. In our paper, the diver-
sity represents a much broader concept than view-specific
feature attributes. It could be caused by not only view-
specific attributes, but also noise and outliers, which is not
conducive to clustering. Additionally, diversity measure-
ment emphasizes the cross-view mutual exclusions in di-
versity graphs, formulated by Eq. (5), which will lead the
learned consistency in {Gc_v}Vv=1 to be more compact.
2) Why distill consistency from diversity graphs. At train-
ing epoch t, the global consistency graph Gt−1

c represents
the consistency that the server has extracted. However, at
the beginning of model training, there must be some unex-
tracted consistency that implied in each client. Besides, in
local training, the diversity graphs are generated under the
guidance of Gt−1

c , which results in the unextracted consis-
tency is transferred to diversity graphs from clients’ sam-
ples. Therefore, it is necessary to distill consistency from
diversity graphs. Finally, as the server continues to distill,
the diversity graphs will eventually contain only diversity.

EXPERIMENTS
Experimental Settings

Datasets We employ six widely-used multi-view datasets
for comparative studies, including Mfeat (Wang, Yang, and
Liu 2019), Scene (Fei-Fei and Perona 2005), Aloi (Li et al.
2023), Animal (Li et al. 2016), Cifar10 (Zhang et al. 2018)
and NoisyMNIST (Peng et al. 2019). The specific character-
istics of these datasets are recorded in Table 1.

The Compared Methods In order to verify the effective-
ness of our proposed MGCD, we employ eight state-of-the-
art multi-view clustering methods for comparative experi-
ments, which includes five centralized methods of LMVSC
(Kang et al. 2020), SiMVC (Trosten et al. 2021), CoMVC
(Trosten et al. 2021), MFLVC (Xu et al. 2022), GCFAgg
(Yan et al. 2023) and three federated methods of FedMVL
(Huang et al. 2022), FedDMVC (Chen et al. 2023), FCUIF

Data Samples Clusters View dimensions
Mfeat 2000 10 216/76/64/6/240/47
Scene 4485 15 20/59/40
Aloi 10800 100 77/13/64/125

Animal 11673 20 2689/2000/2001/2000
Cifar10 50000 10 512/2048/1024

NoisyMNIST 50000 10 784/784

Table 1: Statistical characteristics of the six datasets.

(Ren et al. 2024), where all compared methods are imple-
mented according to the source codes released by the au-
thors, and the optimal parameters are set according to the
suggestion in the corresponding literature.

Metrics There are four widely-used metrics applied to
quantitatively evaluate the performance of multi-view clus-
tering methods, including Accuracy (ACC), Normalized
Mutual Information (NMI), Purity(Pur) and Adjusted Rand
Index (ARI), whose detailed definitions are illustrated in
(Liang et al. 2022). For each of the above metric, the higher
value indicates the better performance.

Implementation Details. The diversity encoder Ev
d , con-

sistency encoder Ev
c and decoder Dv are formulated by

four fully-connected layers and the dimensions are set to
{Dv, 500, 500, 2000, 512}, {Dv, 500, 500, 2000, 512} and
{512, 2000, 500, 500, Dv} respectively, where the activa-
tion function is RELU. The fv

d (· ) in client is composed
of a fully-connected layer with dimendisons {512, N}.
To reduce the size of server model, the dimensions of
fpre(·) and fpost(·) are respectively set as {N, 500, N}
and {N, 500, N}, where N >> 500. At the first train-
ing epoch, we pre-train dual autoencoder 20 epochs in each
client. Then, at the following training epoch, the clients and
server iteratively train on mini-batches of size 256 by us-
ing Adam optimizer(Kingma and Ba 2014) with learning
rate of 0.000001 in PyTorch(Paszke et al. 2019) framework.
The hyperparameters γ and λ are set to 100 and 0.001 re-
spectively. All experiments are conducted on the same ma-
chine with the Intel(R) Xeon(R) Gold 6148 2.40GHz CPU,
GeForce RTX 3090 GPUs, and 512GB RAM.

Experimental Results
Comparisons with other methods Table 2 records the ex-
perimental comparisons between our proposed MGCD and
the other 8 comparing methods, where the best and the sub-
optimal performance are highlighted in bold and underlined,
respectively. In addition, Figure 3 illustrates the visualiza-
tion of clustering results of each method on the Aloi dataset.
According to Table 2 and Figure 3, we can observe that:

(1) Among the employed all datasets, our MGCD is supe-
rior to all comparing methods on all evaluation metrics, even
has a significant leading gap compared with sub-optimal
methods. Especially on the Animal dataset, the improve-
ments over the sub-optimal method are 32.91%, 48.31%,
32.91%, and 36.85% on ACC, NMI, ARI and PUR, respec-
tively. These experimental results demonstrate the effective-
ness of our proposed method and we attribute such success



Data set Metric Centralized Federated
LMVSC SiMVC CoMVC MFLVC GCFAgg FedMVL FedDMVC FCUIF Ours

ACC 0.6550 0.8001 0.7750 0.8665 0.5945 0.1300 0.9365 0.9341 0.9390
Mfeat NMI 0.6386 0.8407 0.8243 0.8736 0.7401 0.0085 0.9063 0.8951 0.9173

ARI 0.5283 0.7563 0.7207 0.8166 0.5043 0.1790 0.9002 0.8854 0.9005
PUR 0.7461 0.8413 0.8147 0.8665 0.6565 0.1320 0.9503 0.9491 0.9671
ACC 0.3222 0.4383 0.4347 0.3173 0.2022 0.0945 0.4360 0.4252 0.5285

Scene NMI 0.3396 0.4657 0.4627 0.3392 0.1842 0.0100 0.4184 0.3880 0.5625
ARI 0.1714 0.2787 0.2710 0.1784 0.0746 0.0643 0.2697 0.2474 0.3665
PUR 0.3922 0.5084 0.5001 0.3456 0.2486 0.1064 0.4237 0.4020 0.5845
ACC 0.6390 0.6730 0.7010 0.7490 0.5745 0.0349 0.8566 0.7460 0.9160

Aloi NMI 0.7700 0.8530 0.8940 0.8570 0.8268 0.0731 0.9210 0.8426 0.9668
ARI 0.5030 0.5550 0.6530 0.6680 0.5184 0.0374 0.8050 0.6285 0.8992
PUR 0.6900 0.8150 0.7940 0.7810 0.5968 0.0361 0.8941 0.7926 0.9302
ACC 0.1310 0.1600 0.1560 0.1910 0.1528 0.0791 0.1829 0.1793 0.5201

Animal NMI 0.0290 0.1360 0.1350 0.1660 0.1480 0.0147 0.1641 0.1590 0.6491
ARI 0.0290 0.0530 0.0500 0.0750 0.0639 0.0125 0.0694 0.0665 0.4010
PUR 0.1390 0.1720 0.1640 0.2030 0.1929 0.1010 0.1720 0.1673 0.5715
ACC 0.8753 0.8359 0.9275 0.9925 0.9902 0.1646 0.9917 0.9888 0.9948

Cifar10 NMI 0.7798 0.7324 0.8925 0.9795 0.9744 0.0533 0.9781 0.9719 0.9851
ARI 0.3274 0.8057 0.9836 0.9836 0.9787 0.1673 0.9818 0.9756 0.9885
PUR 0.8753 0.8359 0.9275 0.9925 0.9902 0.1691 0.9917 0.9888 0.9948
ACC 0.3274 0.3831 0.4141 0.2497 0.6465 0.1246 0.4564 0.4263 0.7791

NoisyMNIST NMI 0.3027 0.3266 0.4047 0.2054 0.6469 0.0130 0.4137 0.3893 0.7261
ARI 0.1603 0.2988 0.3616 0.0778 0.4522 0.1221 0.2861 0.2758 0.6351
PUR 0.5196 0.4109 0.4667 0.1905 0.6497 0.1467 0.4564 0.4263 0.7791

Table 2: Comparative results between our proposed MGCD and 8 state-of-the-art methods on six datasets, where the best
results are presented in bold and the second-best are in underline.

(a) GCFAGG (b) MFLVC (c) LMVSC (d) FedMVL (e) FedDMVC (f) FCUIF (g) Ours

Figure 3: The visualizations of the clustering results of different methods on Aloi dataset.

(a) ACC (b) ARI

Figure 4: The clustering performance comparisons between
the consistency graph Gt

c and the diversity graph {Gv
d}Vv=1

on Aloi datasets as the training epoch increases.

to the measurement of consistency and diversity in server,
which makes our model generate a more compact consis-
tency graph with a clear cluster structure.

(2) As shown in Figure 3, we select three central-
ized multi-view consistency clustering methods (GCFAGG,

MFLVC, LMVSC) and three federated multi-view consis-
tency clustering methods (FedMVL, FedDMVC, FCUIF) to
conduct the visualization comparisons of clustering results
with our proposed MGCD. We can observe that our MGCD
exhibits a more clear cluster structure than all other methods,
which demonstrates the superiority of MGCD in exploring
consistency information across different views.

Comparisons between global consistency graph and lo-
cal diversity graphs of our model Figure 4 illustrates
the clustering performance comparisons between the con-
sistency graph Gt

c and the diversity graphs {Gv
d}Vi=1 on Aloi

dataset, where the diversity graph is represented by the av-
eraging of local diversity graphs from V clients. Accord-
ing to Figure 4, we can find that, as the training epoch
increases, the clustering performance of consistency graph
gradually increases while that of diversity graph gradually
decreases, which demonstrates that our proposed MGCD
gradually transfer the consistent information from local di-
versity graphs to the global consistency graph.
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Figure 5: The convergence analysis and parameter analysis on Aloi, Animal datasets respectively.

Ls Lr Lcl Ldd ACC NMI ARI PUR
(A) ✓ ✓ ✓ 0.853 0.924 0.774 0.868
(B) ✓ ✓ ✓ 0.903 0.954 0.867 0.919
(C) ✓ ✓ ✓ 0.807 0.899 0.599 0.838
(D) ✓ ✓ 0.795 0.883 0.598 0.816
(E) ✓ ✓ ✓ ✓ 0.916 0.966 0.899 0.930

Table 3: Ablation studies of loss components on Aloi dataset.

Dual AE Distillation ACC NMI ARI PUR
(a) ✓ 0.796 0.898 0.638 0.822
(b) ✓ 0.859 0.927 0.777 0.874
(c) ✓ ✓ 0.916 0.966 0.899 0.930

Table 4: Ablation studies on some components of MGCD.

Model Analysis
Ablation Study. We conduct two series of ablation stud-
ies from the perspective of loss functions and model com-
ponents. Table 3 records the loss ablation studies on Aloi
dataset, where Ls is the loss to generate diversity graph in
client, Lr is the loss to obtain latent representation of sam-
ples in client, Lcl is the loss to measure consistency in server
and Ldd is the loss to measure diversity in server. Table 4
records the model ablation studies on Aloi dataset, where
Dual AE represents dual autoencoder in client and Distilla-
tion represents the consistency distillation operation fpre(· )
in server. According to Table 3-4, we can find that:

(1) According to Table 3, (E) is superior to (A), which
indicates that the reliable representation of samples is help-
ful to generate desired graphs and can further contribute to
improve the clustering performance. Meanwhile, (E) also
shows better clustering performance than (B), (C) and (D),
which demonstrates the effectiveness of our employed graph
consistency and diversity measurement. In addition, accord-
ing to the comparison between (B) and (C), we can find
that both graph consistency measurement and graph diver-
sity measurement are helpful to the generation of global con-
sistency graph, while the later has greater contribution.

(2) In Table 4, (a) replaces the designed dual autoencoder
with traditional autoencoder in each client and (b) removes
the consistency distillation operation fpre(· ) from global
training in server. According to Table 4, (c) shows better
performance than (a), which indicates that the specificity

representation from our designed dual autoencoder is more
suitable for the generation of diversity graph in each client
and our designed dual autoencoder performs significant su-
periorities against traditional autoencoder. Meanwhile, (c)
outperforms (b), which demonstrates the fact that the diver-
sity graphs from clients still contain consistent information.
Our designed distillation operation can gradually transfer
the consistent information implied in diversity graph to the
global consistency graph, which avoids the loss of consistent
information from local clients and enhances the robustness
of the global consistency graph.

Convergence analysis. Figure 5 shows the convergence
curves of MGCD on Aloi, Animal datasets, where the values
of loss and evaluation metrics are illustrated in each subfig-
ure. According to Figure 5, we can observe that the value of
loss drops significantly at the beginning of the iteration pro-
cess and gradually reaches stability as the number of itera-
tions increases. And the values of evaluation metrics gradu-
ally increase and fluctuate in a narrow range. These results
verified the convergence of our proposed MGCD.

Parameter sensitivity analysis. We experimentally eval-
uate the effect of hyperparameters on the clustering per-
formance of MGCD, which includes γ in clients and λ in
server. Figure 5 shows the NMI metric value of MGCD on
Aloi, Animal datasets, where γ is varied from 10−3 to 103

and λ from 10−3 to 103. According to Figure 5, the cluster-
ing results of MGCD are insensitive to both γ and λ ranging
from 10 to 1000, and 0.001 to 0.01, respectively. In our ex-
periments, we set γ to 100 and λ to 0.001.

Conclusion
In this paper, we proposed a new graph-based federated
multi-view clustering method, which leverages both consis-
tency and diversity of multi-view graph structure to achieve
desired clustering while preserves data privacy. Compared
with previous methods, our proposed method conducts
multi-view fusion according to the graph structure rather
than feature representation, which can better mitigate model
inversion attacks and preserve the client privacy. Meanwhile,
the measurement of both consistency and diversity can fur-
ther assist in generating more compact consistency graph,
which naturally improves the final clustering performance.
Extensive experimental results on various datasets have ver-
ified the effectiveness of our proposed method.
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